Sensors Response Time validation using Dimensionality Reduction Techniques
نویسندگان
چکیده
The temperature and Pressure sensors play a vital role in Nuclear Power Plants (NPP). The Rosemount temperature sensor helps to produce the exact temperature and pressure measurement of the nuclear power plant. The sensors that supply real data must respond quickly to the safety systems of NPP. In this paper, first the Dimensionality of the Original dataset is reduced by using Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Singular Value Decomposition (SVD). Finally the sensors Response Time is computed and compared with original response time.
منابع مشابه
Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملTowards Dimensionality Reduction for Smart Home Sensor Data
In this paper, we investigate in how far nonlinear dimensionality reduction (DR) techniques can be utilized to tackle particular challenges of sensor data from smart home environments. Smart homes often contain a large number of sensors of various types, providing output in real time, which results in a sequence of high-dimensional, heterogeneous data vectors. We propose that DR techniques can ...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013